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Dynamical Phenomena near a Saddle-Focus
Homoclinic Connection in a Hamiltonian System1
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We present main features of the orbit behavior for a Hamiltonian system in a
neighborhood of homoclinic orbit to a saddle-focus equilibrium. These features
includes description of hyperbolic subsets and main bifurcations when varying
a value of the Hamiltonian. The proofs of results about bifurcations are given.
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1. INTRODUCTION

The goal of this paper is to present results about dynamical behavior, espe-
cially bifurcations, in a two-degrees-of-freedom Hamiltonian system in a
neighborhood of a homoclinic orbit to saddle-focus equilibrium. Such the
study allows one to comprehend deeper the structure of a Hamiltonian
system in the large being in the same time more tractable technically. First
results in this direction were obtained by Devaney(1) who carried over the
impressive and unexpected results by Shilnikov(2) from general systems to
Hamiltonian ones that required of a special (symplectic) tool. The main
task in ref. 1 was to distinguish a hyperbolic subset in a neighborhood of
a transverse (in a level of the saddle-focus p) homoclinic orbit to p.
Namely, it was proved that a hyperbolic subset exists such that on a cross-
section to orbits of this set the related Poincare� map was conjugated to the

357

0022-4715�00�1000-0357�18.00�0 � 2000 Plenum Publishing Corporation

1 To Prof. G. Nicolis with the greatest respect.
2 Research Institute for Appl. Math. 6 Cybernetics, 10 Ul'yanov St., 603005 Nizhny

Novgorod Russia.



Bernoulli shift of 2 symbols. Since in ref. 1 the system examined in the level
H=H( p), a bifurcational nature of the problem was not displayed. Bifur-
cations in this and similar problems involving homoclinic orbits to equi-
libria, not to periodic orbits, appear naturally when changing the internal
parameter of any Hamiltonian system��the value of its Hamiltonian. In the
problem under consideration a rich bifurcational structure was indicated in
ref. 3. Though proofs of these results were absent there, all principal
points to carry out the proofs were presented. For an interested reader we
point out that the proofs of results concerning hyperbolic behavior and
related symbolic dynamics, in particular, the description of homo- and
heteroclinic orbits to the saddle-focus and nearby periodic orbits have been
given in ref. 4. Here we present proofs about bifurcations following the lines
given in ref. 3. Namely, we show that as c � H( p) countably many times
parabolic periodic orbits emerge, they break up into elliptic and hyperbolic
ones, then the elliptic orbit goes through doubling, giving rise to the
beginning of the doubling cascade which ends with the enlargement of the
hyperbolic set (the related Bernoulli shift acquires two new states). In addi-
tion, we point out the boundary points of intervals in c where bifurcations
related with changing the hyperbolic set take place.

Another problem intimately connected with the just mentioned is the
structure of a Hamiltonian system near a heteroclinic connection with two
saddle-foci p1 , p2 which was studied in ref. 4. Naturally, such the connec-
tion can appear only if saddle-foci belong to the same level of the
Hamiltonian. Under a perturbation p1 , p2 generically diverse to different
levels and connection breaks up. Thus, such the problem should be studied
in at least one-parameter family of Hamiltonian systems. In such the setting
the problem contains two parameters, the value of the Hamiltonian c and
the external (governing) parameter +. It has to expect a possibility of more
complex degeneracies in such the system. For instance, we have shown in
ref. 4 that, in contrast to the case of a transverse homoclinic orbit to a
saddle-focus, where all nearby homoclinic orbits are transverse, here two
infinite sequences + (i)

k , i=1, 2, exist such that the system at +=+ (i)
k , has a

nontransverse homoclinic orbit to pi with the quadratic tangency.
One more important reason of the interest to such the homoclinic

phenomena is a possibility to understand scenaria of appearance, the exist-
ence and the structure of localized (pulses and fronts) traveling waves and
stationary patterns to parabolic gradient-like 1D PDEs. Such the solutions
can be temporally stable.(5)

The next section contains the setting up and statements of the main
theorems. The necessary technical assertions are given in Section 3. Sec-
tion 4 is devoted to the proof of the theorem on bifurcations. Results of
ref. 4 about hyperbolic behavior are essentially used in the paper.
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2. SETTING UP THE PROBLEM AND MAIN RESULTS

Let (M, 0) be a smooth (analytic or C�) four-dimensional symplectic
manifold with symplectic form 0. Consider a C r-smooth Hamiltonian
vector field XH (necessary smoothness will be specified later on) with
Hamiltonian H such that XH has a singular points p of saddle-focus type.
The latter means the spectrum of a linearization operator of XH at p con-
sists of a quadruple of eigenvalues \:\i;, :;{0. Such the point p has
two local smooth submanifolds, stable one W s and unstable Wu, lying both
in the level H=H( p). This set, outside of singular points, is a smooth
3-dimensional submanifold. In particular, stable and unstable manifolds of
the same or different saddle points (if they belong to the same level) generi-
cally intersect each other transversely.

Main Assumption. There is a homoclinic orbit 1 to p being trans-
verse intersection of W s, W u along 1 in the level H=H( p). Such the orbit
is usually called the transverse homoclinic orbit to p though, strictly
speaking, this intersection is not transverse in M.

A general problem is to describe the orbit behavior of nearby orbits in
some neighborhood U of 1. It is worth emphasizing that we consider only
those orbits of XH which lie entirely in U for all t. It turns out that even
this problem is too hard as it will be clear from our results. Particular
results in this direction are presented below.

To describe orbit behavior near the homoclinic connection we need in
some notions of the symbolic dynamics (see, for instance, ref. 6). A sym-
bolic system is constructed by means of a compact topological space called
the alphabet A, and some continuous mapping T: A_A � [0, 1] called
a transition matrix. The symbolic system consists of the space Y being a set
of all two-sided sequences (..., |&1 , |0 , |1 ,...) with the fixed zero position
(the topology is given by the Tichonov product structure) such that any
two symbols |i , |i+1 can follow one after another iff T(|i , |i+1)=1, and
of a continuous map _: Y � Y being a shift to the left for any symbolic
sequence. This symbolic system denotes (Y, _). For our case we use the
following alphabets and transition matrices. Consider a compact countable
space B consisting of points \n&1, n # N complemented with the non-
separable two-point space [0+, 0&]. This set has the discrete topology
everywhere except for 0+, 0&, and neighborhoods of the point 0+ are the
sets [n&1, n�k>0] along with the points 0+, 0&, the sets [&n&1,
n�k>0] along with the points 0&, 0+ are the neighborhoods for 0&.

As an alphabet we take a set B, transitions are described as follows:
(i) after symbol 0+ can follow only 0+; (ii) after any symbol of B, but not
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0+, can follow any symbol from B excepting for 0&; (iii) only 0& can
precede 0&. The corresponding symbolic system is denoted (Y0 , _).
Another symbolic system we use is (Ym , _) (Bernoulli shift), here the
alphabet is [\n&1, n=1,..., m] and all transitions are admissible.

The orbit behavior in some neighborhood U of 1 is described via the
description of orbits of the related Poincare� map on some cross-section N
to 1. This section near the trace of 1 on it is foliated by levels H=c of the
Hamiltonian into two-dimensional symplectic disks Nc with respect to the
restriction of 2-form 0. Thus, one obtains a one-parameter family of sym-
plectic maps Pc : Nc � Nc . The first theorem describes hyperbolic subsets
existing in any level Nc . Recall that we describe only those orbits which lie
in U for t # R.

Theorem 1. (1) At c=0 Poincare� map P0 on N0 is conjugated to
the symbolic system (Y0 , _). (2) There is c0>0 such that for |c|�c0 in the
level H=c an invariant hyperbolic subset exists for which the related Poin-
care� map is conjugated to symbolic system (Ym , _), where m=n(c), and
function n(c) has the following asymptotics as |c| � 0: n(c)t&(;�2?:) ln |c|
+const. (3) In a segment [&c0 , c0] there is a countable set of accumulating
zero disjoint intervals In , n # [Z"0], such that for c # In the set of all orbits
lying entirely in U & [H=c] coincides with the hyperbolic subset of the
item 2.

We call intervals of the item 3 hyperbolicity intervals. In accordance
with the construction, periodic orbits of XH correspond to periodic points of
Poincare� map P, moreover, fixed points of P give periodic orbits of the field
that make one round along 1, n-periodic points of P give n-round periodic
orbits of the field. In the same way the notion of n-round homoclinic orbits
is introduced: these are homoclinic orbits of XH which are homotopic to n1
in a thin tube near 1. The proof of the Theorem 1 is given in ref. 4. It relies
on several auxiliary assertions which are presented below.

The construction of hyperbolic subsets gives the following property of
these sets. If one fixes the number 2n of states in the Bernoulli shift then the
hyperbolic set with this number of states exists for all values of c with |c|<
cn<c0 . In particular, for |c|�c0 there exists a hyperbolic set with 2 states.
This set contains two fixed saddle points, one orientable and one nonorien-
table. Stable and unstable manifolds of the orientable saddle periodic orbit
play an essential role in detecting boundaries of bifurcational intervals in c
(see, Subsection 4.1).

It follows from the Theorem 1 that for any n # N there are orbits corre-
sponding to sequences (..., 0&, 0&, a1 , a2 ,..., an , 0+, 0+,...). These orbits are
homoclinic to p and n+1 is their roundness.
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Corollary 1. In a neighborhood of 1 there are countably many
homoclinic orbits of any roundness.

Remark 1. It follows from the proof of this theorem that all these
homoclinic orbits are transverse as 1 itself.

Further assertions concern with the bifurcational phenomena occurring
when c varies near H=H( p). Theorem 1 implies that, as |c| � 0, the number
of states in the related Bernoulli shift (Ym , _) increases, hence, bifurcations
have to occur giving rise reconstructions in the orbit structure in levels H=c.
It turns out that on the segment [&c0 , c0] in the complementary set to
hyperbolicity intervals there are subintervals such that when c runs them
bifurcations really take place.

Let us fix c>0 to be definite, and denote (c$n+1 , c"n+1), (c$n , c"n) two
neighboring hyperbolic intervals, c"n+1<c$n .

Theorem 2. (1) In each interval (c"n+1 , c$n) a subinterval Jn exists
such that in Jn there are points d0>d1 corresponding to the following bifur-
cations of the Poincare� map Pc : (i) at c=d0 inside of rectangle Nc a parabolic
fixed point appears which breaks up for c<d0 into elliptic and hyperbolic
fixed points, both of them persist till c=d1 ; (ii) at c=d1 the elliptic point
becomes a degenerate fixed point with double multiplier &1, two-dimen-
sional Jordan box of the linearization matrix and nonzero Lyapunov value
that leads to its doubling for c<d1 and appearing a period 2 elliptic periodic
point, the degenerate fixed point changes into a nonorientable saddle fixed
point.

The same is valid for c<0.

Remark 2. The bifurcation occuring at c=d1 is, in fact, the beginn-
ing of a doubling cascade leading to the formation of new Smale horseshoe
constructed on two saddle fixed points, namely, the orientable saddle (with
positive eigenvalues) appearing from the parabolic point after its destruction
and nonorientable (Mo� bius) saddle having appeared from the elliptic point
in the process of the first doubling. See ref. 12, where this process is discussed
in more details.

3. AUXILIARY RESULTS

We use the Moser's normal form(9) to represent the local flow. Though
it was found for analytic Hamiltonians, it also works in C�-case (Lychagin)
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and sufficiently smooth case.(7, 8) It is sufficient the Hamiltonian to be C12,
then by means of C4-smooth symplectic transformation it can be brought
into the following normal form in a symplectic frame (x1 , x2 , y1 , y2),
0=dx1 7 dy1+dx2 7 dy2 , near a saddle-focus

H(x1 , x2 , y1 , y2)

=h(!, ')=:!+;'+ } } } , !=x1y1+x2y2 , '=x1y2&x2y1 (1)

with a polynomial h. If H C r-smoothly depends on a parameter + #
(&+0 , +0) then for all |+| small enough there are symplectic coordinates
C r-smoothly depending on + such that H+ has the same form (1), only h
will depend on +.

Functions !, ' are local integrals of the flow, and equations are
immediately integrated (all details of this calculations can be found in
ref. 4). The orbit behavior is studied by means of related Poincare� map
constructed on some cross-sections N s, N u to stable and unstable
manifolds of p. They are foliated by levels H=c into annulae N s

c , N u
c . For

the case of homoclinic connection this map is a superposition of two maps,
local one near p and global one, near a global piece of 1. Using (1) and
introducing a function !=ac(')=:&1(c&;'+ } } } ) being a unique solu-
tion of the equation h(!, ')=c with respect to ! in some neighborhood of
p, we obtain the following representation of the local map Tc

(1, 3, 4)

.=%+Bc(')(mod 2?), '=' (2)

where (%, ') and (., ') are local coordinates on the sections, if c=0 the
segments '=0 correspond to the traces of stable and unstable manifolds,
respectively. The local map obtained is symplectic, it is discontinuous along
the circle '=0 for c=0 and it is smooth for c{0. The properties of func-
tion Bc(') are described below.

Global map Sc is defined in some neighborhoods of traces of 1 on the
sections, and is given in coordinates (%, ', c) on the sections N s and
(., ', c) on N u as

%1= f (., ', c)= fc(., '), '1= g(., ', c)= gc(., ') (3)

with D( f, g)�D(., ')#1 (symplecticity), f (0, 0, 0)= g(0, 0, 0)=0 (as the
trace of 1 on N u transforms to the trace of 1 on N s), (�g��.)(0, 0, 0){0
(transversality condition of W s and Wu).
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All further considerations are carried out in some neighborhoods of
points 1 & N s, 1 & N u. These neighborhoods 6 s, 6 s are determined by
inequalities

6 s=[(%, ', c) | |%|�$, |'|�=, |c|�c0]

6u=[(., ', c) | |.|�$, |'|�=, |c|�c0]

for =, $, c0 small enough. The levels Vc=[H=c] are invariant sets, so we
obtain a family of Poincare� maps depending on parameter c, given on
rectangles 6 s

c=6 s & V, 6 u
c =6 u & Vc .

The properties of the local map T are formulated in the next lemmas,
their proofs are given in ref. 4. Here and later on we denote Ok(x) a func-
tion that is given on a neighborhood of x=0 and such that Ok(x)�xk is
bounded as x � 0, o(x) means that o(x)�x � 0 as x � 0, and O(x) denotes
a function which tends to zero as x � 0.

Lemma 1. For |c|, |'| small enough the following holds

B$0(')=
;�:+O(')

'
, |B$0 |�

;
2: |'|

(4)

B$c(')=[L(c, ')+a"cR(c, ')+O2(c, ')]�('2+a2
c(')) (5)

with L(c, ')=:&3(:2&;2) c+;(;2+:2) ', R(c, ')=('2+a2
c(')) ln('2+

a2
c('));

B"c(')=[q2(c, ')+O3(c, ')]�('2+a2
c('))2 (6)

with a quadratic form q2(c, ')=:&2_(3&_2) c2+2:&1(_4&1) c'&
_(1+_2)2 '2, _=;�:, having positive discriminant 2=:&2(_2+1)3.

To formulate next lemma let us consider a standard covering of the
annulus N u

c . It is a strip on the plane (., '), where . is considered as affine
coordinate, |'|�=. If %=u(') is a function given for |'|�=, then the image
of its graph w.r.t. Tc is a curve in the strip (., '), being graph of a function
(see (2))

.=u(')+Bc(') (7)

Lemma 2. There are positive =, c0 small enough such that in the
strip (., '), |'|�=, the image under T (c) of the graph of a C2-function
%=u('), |u(')|�$, |u$(')|�d1 , |u"(')|�d2 , is
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1. for c=0 the graph of a function .(') being C2-smooth everywhere
on |'|�= except for the point '=0 where it has a logarithmic singularity,
derivative of .(') satisfies the estimate |.$(')|�;�2: |'|;

2. for c{0, |c|�c0 , c0 small enough, the graph of a C2-smooth func-
tion .(') such that

(i) .$(') is a monotone function with a unique zero at a minimum
point 'c , 'c=((;2&:2)�;(;2+:2)) c+o(c), o(c) � 0 as |c| � 0;

(ii) the value .('c) tends to &� when |c| � 0, moreover, the follow-
ing representation is valid: .('c)=(;�:) ln |c|+E(c) with a bounded func-
tion E(c), and (d�dc) .('c)=(;�:+O(c))�c.

The following lemma allows one to distinguish the region of hyperbolicity
and a band on 6 s

c where the creation of parabolic fixed points occurs.

Lemma 3. For any K>0 there exists #>0 such that for all |c|�c0

there is a region on the segment |'|�=, where the estimate |B$c(')|�K
holds. Furthermore,

if c=0, then this region coincides with the segment |'|�=;

if c{0, then this region consists of two segments given with
inequalities 'c+#c2�'�= and &=�'�'c&#c2.

Next lemma is used for proofs that tangency is quadratic if stable and
unstable manifolds of some periodic orbit in a neighborhood of 1 are
tangent.

Lemma 4. Consider a family of smooth C2-functions of the form
.=v('), |'|�= with C2-norms bounded with some constant D. Then there
is a positive c1 small enough such that for all c, |c|�c1 , graphs of any
function .(') from Lemma 2 and of v(') are quadratically tangent if they
have a tangency point.

Now we are able to describe the domain of the map T and its restric-
tions Tc (see (2)). Let us denote '=*\(!) two branches of the inverse
function for !=Bc('). Fix =>0, $>0 such that conclusions of preceding
Lemmas 1�4 would hold.

1. c=0. Then for any %, |%|�$, curves .=%+B0(') (here % is a
parameter marking the curve) monotonically decrease for '<0 and
increase for '>0. Since B0(') � &� as |'| � 0, then graphs of inverse
functions '=*+(.&%) and '=*&(.&%) being projected into the annulus
Nu

0 are the curves which go round the annulus infinitely many times
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approaching the circle '=0 as . � &�. Take two such the curves with
%=\$. Then, beginning from some n0>0 these curves will intersect all
segments .=$&2? |n|, n�n0 , |'|�=. Thus, we obtain infinitely many
strips

_u
n=[(., ') | |.|�$, *+(.&$+2?n)�'�*+(.+$+2?n)],

if n>0 (i.e., '>0)
(8)

_u
n=[(., ') | |.|�$, *&(.+$&2?n)�'�*&(.&$&2?n)],

if n<0 (i.e., '<0)

being the domain of T0 .

2. c{0. Lemma 2 implies that curves .=$+Bc(') for all |n|�n0

intersect segments .=$&2? |n|, n0�n�n1(c), |'|�=, where n1(c) is
equal to that maximal n such that $+Bc(')+2?n<&$. For these n equa-
tion .=%+Bc(') can be solved for %=\$ giving for n>0 lower (at
%=$) and upper (for %=&$) boundaries of the strip _u

n . If n<0 then
lower and upper boundaries change places. The difference n1(c)&n0 gives
the upper estimate for the number of strips. In fact, in order to get hyper-
bolicity for the related invariant sets, we need to throw away some finite
number of initial sets. In fact, hyperbolicity can be proved for intervals
|'&'c |�#c2 where |B$c |>K. One can be shown (see ref. 4) that asymptoti-
cally

n(c)t&
;

2?:
ln |c|+const (9)

We have constructed strips _u
n making up the range of the local map

T. The domain of this map, _s
n , are preimages of _u

n , and they are deter-
mined with inequalities similar to (8) with *\(\$&%&2? |n| ).

4. PROOF OF THEOREM 2

We look for fixed points of the Poincare� map as follows. For the
global map S0 the inequality (�g0 ��.)(0, 0){0 holds, f0(0, 0)=0, g0(0, 0)
=0, then for some positive small c0 and |c|<c0 the second equation in (3)
can be solved w.r.t. ., therefore (3) can be rewritten in the ``cross'' form

%1=Qc(', '1)=&
�Fc

�'1

, .=Rc(', '1)=
�Fc

�'
(10)
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for |'|, |'1|, |.|, |%| small enough, here Fc is a generating function of the
symplectic map. Using (2) the equations for finding fixed points take the
form

Qc(', ')=%(mod 2?), Rc(', ')=%+Bc(')(mod 2?)

Eliminating % from these equations we come to the equation

rc(')=Bc(')(mod 2?), with rc(')=Rc(', ')&Qc(', ')=
�
�'

Fc(', ')

(11)

It is easily seen that the function �=rc(') in l.h.s of this equation is a
smooth function in ', c, which vanishes at '=0, c=0. Considering it as a
family of smooth functions of ' depending smoothly on a parameter c we
get that the functions of this family are C3-close to that which corresponds
to c=0. The graph of this latter function contains the point (0, 0), there-
fore graphs of all functions of the family lie in the band |�|�$ for = small
enough.

On the other hand, due to Lemmas 2, 3 the function Bc(') on the seg-
ment [&=, =] has a unique minimum that monotonically tends to &� as
|c| � 0. Considering its graph in the strip |'|�=, &?���? one obtains
that it consists of finitely many branches with their range the segment
[&?, ?] and a middle part in the form of a parabola-like sharp tongue
that stretches monotonically till �=&? when decreasing |c|. It implies
that these two graphs always have finitely many points of the transverse
intersection inside of the band |�|�$, these intersection points correspond
to fixed points of the hyperbolic set (they also correspond to the fixed
points of the Bernoulli shift), and at any passage of the tongue through
the band one obtains a point of tangency of these graphs. So, we have
countably many such values of c when |c| � 0. That the tangencies are
quadratic follows from the representation (6) implying |B"c(')| � � in
the region |'&'c |�#c2 where tangencies occur.

Remark 3. It should be emphasized that the considerations presented
essentially use the fact that the local map Tc is defined and its properties
are known (in fact, those of the function Bc) in the neighborhood of the
trace of whole stable manifold ('=0 here), not only in a neighborhood of
the trace of the homoclinic orbit 1.

In order to connect the intersection points of the graphs and fixed
points of the map let us apply the idea from ref. 10 which connects fixed
points of an area preserving map and critical points of its generating function.
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Lemma 5. Let S: (x, y) � (x1 , y1)=( f (x, y), g(x, y)) be a sym-
plectic map and suppose gx{0 in some simply connected region G such
that the map can be written in the cross form x=P( y, y1), x1=Q( y, y1)
with a generating function F( y, y1), that is, P( y, y1)=Fy , Q( y, y1)=
&Fy1

, and F( y, y1) is defined in some simply connected region D, where
Fyy1

{0. Then if (x
*

, y
*

) is any isolated fixed point of S in G then y
*

is
an isolated critical point of the function f ( y)=F( y, y). Conversely, if y

*
is

a critical point of this function such that the point (x
*

, y
*

), x
*

=
Fy( y

*
, y

*
) belongs to G then (x

*
, y

*
) is the fixed point of S. Moreover,

nondegenerate critical points of the generating function correspond to
hyperbolic and elliptic points of the map in dependence of the sign of the
second derivative, and vice versa.

For our case the Poincare� map takes the form

%1= fc(%+Bc(')+2?k, '), '1= gc(%+Bc(')+2?k, ') (12)

As we have already known (see Section 3), the domain of the local map Tc

consists of either countably many strips for c=0, or of the finite number
of strips (always exist for c{0) and, in addition for some c, of a middle
connected part where B$c can vanish (``dangerous'' zone). For these latter c
there are a positive integer k and values of (%, ') such that the value of the
first argument in fc , gc in (12) belongs to the interval (&$, $). A generating
function F� c(', '1) of the map is Fc(', '1)&2?k'&�' Bc(s) ds, therefore,

�F� c

�'
=

�Fc

�'
&Bc(')&2?k,

�F� c

�'1

=
�Fc

�'1

So, using (10) we get

%=Rc(', '1)&Bc(')&2?k=
�F� c

�'
, %1=Qc(', '1)=&

�F� c

�'1

(13)

and the equation for searching for critical points is

f $c(')=\�F� c

�'
+

�F� c

�'1 + }y= y1

=Rc(', ')&B$c(')&2?k&Qc(', ')=0

that is, it precisely coincides with (11). To determine the types of appearing
fixed points of the map we use the following assertion.(10)

Lemma 6 (Parabolicity Conditions). Let, under the conditions
of the preceding Lemma, the critical point be simplest degenerate, i.e.,
f "( y

*
)=0 but f $$$( y

*
){0. Then, the corresponding fixed point of the map
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is parabolic, that is, it has 1 as a double multiplier, Jordan form of the
related linearization matrix is 2-dimensional box, and the related coefficient
(see below) in the normal form of the second order at this point does not
vanish. If, in addition, the family of the functions f depends smoothly on
a parameter c, and at c=0 a simplest degenerate critical point exists at
which f y$$$( y

*
, 0){0 and (�2��c �y) f ( y

*
, 0){0, then, when passing

through c=0 the following bifurcation of the map occurs: on the one side
of c=0 the related map has not fixed points near (x

*
, y

*
), but on the

other side there are two fixed points, elliptic and hyperbolic ones.

The related normal form of the second order to which any area preser-
ving map near its parabolic point can be transformed is the following

x1=x+ y+Ax2+ } } } , y1= y+Ax2+ } } }

Parabolicity condition (i.e., not more higher degeneracy) is A{0. Two-
dimensionality of Jordan box follows from the inequality gx{0.

This Lemma implies that a fixed point will be a parabolic if it
corresponds to a simplest degenerate critical point of generating function.
The Lemma works in our case. Indeed, let us calculate f "c('

*
). As is easily

seen, in notations of Lemma 5, this quantity is equal to the value of func-
tion Fyy+2Fyy1

+Fy1 y1
evaluated at the point y= y1= y

*
. Since the trace

of Jacobi matrix is fx+ gy=P&1
y1

(Qy1
&Py), then fx+ gy&2=P&1

y1
(Qy1

&
Py&2Py1

)=&(Fy1 y1
+Fyy+2Fyy1

)�Fyy1
, the numerator of this fraction at

the point y= y1= y
*

is equal to f "( y
*

), this implies that the trace is equal
to 2 if and only if f "c('*

)=0. This calculation shows that vanishing this
quantity is equivalent to tangency of curves in (11), and their transversality
means that the related critical point is nondegenerate. Since |B$c(')| is large
enough in the region |'&'c |�#c2, then all intersection points of two
graphs over this region are transverse. Thus, we have got countably many
points with the double multiplier 1, one needs to verify that they are
parabolic.

The condition f $$$( y
*

){0 reads in our case as nonvanishing the
quantity

f c$$$('*
)=&B"c(')+

�2Rc

�'2 (', '1)+2
�2Rc

�' �'1

(', '1)

+
�2Rc

�'2
1

(', '1)&
�2Qc

�'2 (', '1)&2
�2Qc

�' �'1

(', '1)&
�2Qc

�'2
1

(', '1)
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where one should set '='1='
*

in the function at the r.h.s.. Similarly, the
function (�2��c �y) f takes the form

�2

�c �y
f=&

�B$c(')
�c

&
�Qc

�c
+

�Rc

�c

The properties of the function Bc(') (Lemma 1), namely, B"c('*
) � �, and

|(���c) Bc('c)| � � prove Lemma 6. From this we get a countable set of
c=d0(n) in each semi-interval c>0 and c<0.

The points c=d1(n) are obtained from another statement connecting
the presence of a fixed point with the double multiplier &1 with some
properties of generating function of the map under consideration.

Lemma 7. Let, under the conditions of Lemma 5, a critical point
y
*

of the function F( y, y) be such that the function Fyy&2Fyy1
+Fy1 y1

evaluated at the point y= y1= y
*

is equal to zero. Then the related fixed
point (x

*
, y

*
) has double multiplier &1 with two-dimensional Jordan box.

If, in addition, F depends on a parameter c and quantities similar to those
in Lemma 6 do not vanish, then for |c| small enough the following bifurca-
tion does occur: in the space (x, y, c) near the point (0, 0, 0) there is a
smooth curve (x(c), y(c), c) through (0, 0, 0) which consists of fixed points
of the map. The fixed points are elliptic for c<0 and they are hyperbolic
for c>0, or vice versa. Furthermore, from this family of fixed points a
family of period 2 points branches at c=0. This latter family exists only on
one side of c=0. In dependence on the sign of some coefficient in the nor-
mal form of the second order the bearing family consists of either elliptic
period 2 points (then it exist for those c where the main family consists of
hyperbolic points) or, for opposite sign of the coefficient, it consists of
hyperbolic period 2 points (then it exists for those c where the main family
consists of elliptic points).

Proof. Let us calculate the trace of linearization matrix D( f, g)�D(x, y).
It is easily verified that fx+ gy=P&1

y1
(Qy1

&Py). Therefore one gets _=
fx+ gy+2=P&1

y1
(Qy1

&Py+2Py1
)=&(Fy1 y1

+Fyy&2Fyy1
)�Fyy1

, it implies
that the trace is equal to &2 iff the numerator of this expression vanishes.
Two-dimensionality of the Jordan box follows, as before, from the
inequality gx{0.

In our case the numerator is equal to &B$c(')+(�Rc��')+2(�Qc��')
&(�Qc ��'1). So, as above, since fixed points appear in the region |'&'c |
�#c2, we conclude that at the bearing elliptic point the quantity fx+ gy

decreases monotonically, when |c| decreases, reaching the value &2. It
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follows from this lemma the existence of the fixed point with double eigen-
value &1, two-dimensional Jordan box for linearized map and nonzero
Lyapunov value, that leads to the doubling bifurcation for the further
varying c. The Theorem 2 is proved.

4.1. Bifurcational Intervals Revisited

Bifurcational intervals, inside of which bifurcations described by
Theorem 2 occur, can be characterized in more details. Namely, boundary
points of these intervals can be explicitly pointed out. To this end, let us
enumerate strips lying outside of the region Dc=[ |'&'c |�#c2] (see
Lemma 3) in such a way that their numeration begins with 1 (for the upper
strip) and &1 (for lower strip). Consider, for definiteness, the case when
(�g��.)(0, 0, 0)>0 in (3). We distinguish a region in 6 s(c) bounded with
segments of stable and unstable manifolds of the orientable saddle fixed
point O lying in the strip _s

1 and corresponding to the sequence (..., 1, 1,...).
Another saddle fixed point N corresponding to (..., &1, &1,...) is nonorien-
table (Mo� bius's one). Stable manifold of the point O intersects transversely
unstable manifold of N, giving a heteroclinic point q1 (in the upper strip,
and, unstable manifold of O transversely intersects stable manifold of N giving
a heteroclinic point q2 (in the lower strip) (see Fig. 1). Let us construct a
curvilinear rectangle Rc in 6 s

c , whose boundaries are: the upper one is the
stable manifold of the point O, the lower one is the preimage under Pc of
a local piece through q1 of the stable manifold of point O (this preimage
is a smooth curve in _s

&1 lying beneath the stable manifold of the point N,
due to nonorientability of N, and intersecting Wu(O)); from the left it is
bounded with unstable manifold of O, and from the right��with the image
under Pc of that local piece through q2 of the unstable manifold of O which
belongs to _s

&1 (this image is a smooth curve that lies to the right of the unstable
manifold of N, due to nonorientability of N, and intersecting W s(O)).

It is readily seen, due to the construction, that the region constructed
is invariant in the sense that image (and preimage) of any strip _s

c( j) Rc

| j |�n(c), belongs to this region, but points from the strip Dc & Rc can be
transformed outside of Rc . When c belongs to a hyperbolic interval, then
Pc(Dc) is situated out of Rc and orbits lying entirely in U cut 6 s(c) only
in strips. When |c| decreases, Tc(Dc) moves monotonically (see Lemma 2)
around the annulus N u

c and countably many times passes through 6u(c),
therefore Pc(Dc) monotonically passes through Rc . The first value of c,
when their intersection is not empty, corresponds exactly to the first
quadratic (Lemma 4) tangency point of the stable manifold of O and of
the image of that piece of the unstable manifold of O (on the left side of
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Fig. 1. The first tangency of stable and unstable manifolds of the point O. The dashed region
is the dangerous one, it is determined by the inequalities |'&'c |�#c2. Only two extreme
strips are plotted.

the boundary of Rc) which belongs to Dc (see Fig. 1 and ref. 13 for
the explanation what the first tangency point means). Before this value of
c no orbits of Pc exist which begin in Dc and hit Rc one more time. After
that, bifurcations take place related with formation of multi period elliptic
points in the first strip in a neighborhood of the tangency point.(11) In fact,
bifurcational structure, when Pc(Dc) passes through Rc , is very com-
plicated, in particular, Newhouse phenomena are expected here. Moreover,
when c decreases further will be tangent with stable manifold of the orien-
table saddle fixed point in the strip _s

2(c), etc. The last point of the bifurca-
tional interval under consideration is that c when the image under Pc of the
right boundary of RcDc (see above) appears to be tangent to lower bound-
ary of Rc . It is a so-called last tangency point.(14) A neighborhood of this
point can be constructed where dynamics is hyperbolic everywhere except
the tangency point itself.(14) After that, when |c| further decreases, hyper-
bolic structure of that larger invariant set of orbits restores and the whole
invariant set of orbits lying entirely in N s

c acquires two new states in the
Bernoulli shift.
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